Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.808
Filtrar
1.
Open Vet J ; 14(1): 108-115, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633168

RESUMO

Background: Biostimulation is a management practice that improves the reproductive parameters, potentiates the desire, and improves the reproductive efficiency during the short breeding season in camels. Aim: This study aims to investigate the concurrent changes in hormonal profiles in response to management and behavioral situations on camel farms in the Eastern region of Saudi Arabia. Methods: A total of 10 male and 50 female camels were used in this study. The hormonal profile of male camels was evaluated weekly starting from December to August. Results: The results show that both serum testosterone and cortisol levels increased (p < 0.01) from December to March compared to April to August. A strong negative correlation was observed between testosterone levels and temperature (r = -0.81, p < 0.05), and a similarly robust negative correlation was found between cortisol levels and temperature (r = -0.83, p < 0.05). The dominant rutting males showed higher levels of testosterone than the submissive males. Serum testosterone levels increased (p < 0.01) in males out of rutting after hearing the sounds of other couples before and during mating. Conclusion: Hearing sounds emitted during mating increases the testosterone output, and improves the libido of male camels during the nonrutting period. It is important to keep two individually housed males for mating purposes. One male joins the herd alone in winter (winter rutter), and the other joins in spring (spring rutter), this could keep the libido extended rutting and improve the reproductive performance in camel herds.


Assuntos
Camelus , Testosterona , Masculino , Feminino , Animais , Camelus/fisiologia , Hidrocortisona , Reprodução/fisiologia
2.
Evol Psychol ; 22(1): 14747049241238645, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38544436

RESUMO

Life history (LH) strategies are results of trade-offs that species must make due to inhabiting certain ecological niches. Although it is assumed that, through the process of developmental plasticity, similar trade-offs are made by individuals in response to a certain level of harshness and unpredictability of their local environments, the study results on this matter are not consistent. In LH-oriented psychological research, such inconsistencies are often explained as a consequence of significant individual differences in phenotypical quality and owned resources, which make studying trade-offs difficult due to different costs and benefits of the same behaviors taken by different individuals. To verify if traditional LH patterns can be found among individuals with more comparable qualities, than in the general population, the current study was conducted on a group of male criminal offenders, who are typically associated with a fast LH strategy. Our results did not show any support for either LH trade-offs or unidimensional character of LH strategies in the criminal group studied. The traditional biodemographic LH traits, that we used to assess a LH strategy, merged into three well-known LH dimensions (mating, parenting, and somatic effort) that yet turned out to be entirely independent from each other. Moreover, each LH dimension turned out to be uniquely related to a different aspect of the developmental environment. The implications of the obtained results are discussed.


Assuntos
Criminosos , Traços de História de Vida , Humanos , Masculino , Reprodução/fisiologia
3.
Proc Biol Sci ; 291(2019): 20240099, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38503332

RESUMO

In many species, establishing and maintaining a territory is critical to survival and reproduction, and an animal's ability to do so is strongly influenced by the presence and density of competitors. Here we manipulate social conditions to study the alternative reproductive tactics displayed by genetically identical, age-matched laboratory mice competing for territories under ecologically realistic social environmental conditions. We introduced adult males and females of the laboratory mouse strain C57BL/6J into a large, outdoor field enclosure containing defendable resource zones under one of two social conditions. We first created a low-density social environment, such that the number of available territories exceeded the number of males. After males established stable territories, we introduced a pulse of intruder males and observed the resulting defensive and invasive tactics employed. In response to this change in social environment, males with large territories invested more in patrolling but were less effective at excluding intruder males as compared with males with small territories. Intruding males failed to establish territories and displayed an alternative tactic featuring greater exploration as compared with genetically identical territorial males. Alternative tactics did not lead to equal reproductive success-males that acquired territories experienced greater survival and had greater access to females.


Assuntos
Comportamento Sexual Animal , Condições Sociais , Masculino , Feminino , Camundongos , Animais , Comportamento Sexual Animal/fisiologia , Camundongos Endogâmicos C57BL , Territorialidade , Reprodução/fisiologia
4.
Commun Biol ; 7(1): 388, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38553567

RESUMO

In seasonally breeding mammals and birds, the production of the hormones that regulate reproduction (gonadotropins) is controlled by a complex pituitary-brain-pituitary pathway. Indeed, the pituitary thyroid-stimulating hormone (TSH) regulates gonadotropin expression in pituitary gonadotropes, via dio2-expressing tanycytes, hypothalamic Kisspeptin, RFamide-related peptide, and gonadotropin-releasing hormone neurons. However, in fish, how seasonal environmental signals influence gonadotropins remains unclear. In addition, the seasonal regulation of gonadotrope (gonadotropin-producing cell) proliferation in the pituitary is, to the best of our knowledge, not elucidated in any vertebrate group. Here, we show that in the vertebrate model Japanese medaka (Oryzias latipes), a long day seasonally breeding fish, photoperiod (daylength) not only regulates hormone production by the gonadotropes but also their proliferation. We also reveal an intra-pituitary pathway that regulates gonadotrope cell number and hormone production. In this pathway, Tsh regulates gonadotropes via folliculostellate cells within the pituitary. This study suggests the existence of an alternative regulatory mechanism of seasonal gonadotropin production in fish.


Assuntos
Oryzias , Animais , Oryzias/metabolismo , Estações do Ano , Reprodução/fisiologia , Vertebrados/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Gonadotropinas/metabolismo , Mamíferos , Tireotropina/metabolismo
5.
Sci Rep ; 14(1): 6352, 2024 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-38491083

RESUMO

Bioenergetic constraints are the ultimate determinant of the timing of reproduction, and seasonal breeding is consequently a widely observed trait. Consistent with this, attention has focused on plasticity in reproductive phenology conceptualized as a response to concomitant advances in the phenology of the environmental energy supply caused by climate change. Few studies, however, have directly compared timing of reproduction with energetic status in free-living wild animals. Here we demonstrate that neither body mass nor adiposity are strong proximate predictors of date of conception in wild reindeer (Rangifer tarandus). Weak coupling between energetic status and the phenology of reproduction accounts for the increasing discrepancy between the phenology of forage (energy supply) and the phenology of reproduction (energy demand) observed across the last 2-4 decades in two populations of this species. The results emphasise that phenological plasticity is not a passive response to changes in energy supply but derives from the way in which environmental factors interact with the core control mechanisms that govern timing. Central in this respect is integration, within the rheostatic centres of the hypothalamus, of information on nutritional status with the circannual life-history calendar.


Assuntos
Rena , Reprodução , Animais , Estações do Ano , Reprodução/fisiologia , Mamíferos , Animais Selvagens , Mudança Climática
6.
Sci Rep ; 14(1): 7127, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531911

RESUMO

Although Chaenomeles is widely used in horticulture, traditional Chinese medicine and landscape greening, insufficient research has hindered its breeding and seed selection. This study investigated the floral phenology, floral organ characteristics, palynology, and breeding systems of Chaenomeles speciosa (Sweet) Nakai. The floral characteristics of C. speciosa were observed both visually and stereoscopically. The microstructures of the flower organs were observed using scanning electron microscopy. Pollen stainability was determined using triphenyl tetrazolium chloride staining. Stigma receptivity was determined using the benzidine-H2O2 method and the post-artificial pollination pollen germination method. The breeding system was assessed based on the outcrossing index and pollen-ovule ratio. The flowers of C. speciosa were bisexual with a flowering period from March to April. The flowering periods of single flowers ranged from 8 to 19 d, and those of single plants lasted 18-20 d. The anthers were cylindrical, with the base attached to the filament, and were split longitudinally to release pollen. The flower had five styles, with a connate base. The ovaries had five carpels and five compartments. The inverted ovules were arranged in two rows on the placental axis. The stigma of C. speciosa was dry and had many papillary protrusions. In the early flowering stage (1-2 d of flowering), the pollen exhibited high stainability (up to 84.24%), but all stainability was lost at 7 d of flowering. Storage at - 20 °C effectively delayed pollen inactivation. The stigma receptivity of C. speciosa lasted for approximately 7 days, and the breeding system was classified as outcrossing with partial self-compatibility.


Assuntos
Polinização , Rosaceae , Gravidez , Feminino , Humanos , Polinização/fisiologia , Óvulo Vegetal , Peróxido de Hidrogênio , Melhoramento Vegetal , Placenta , Reprodução/fisiologia , Flores/fisiologia , Pólen/fisiologia
7.
Nature ; 627(8004): 579-585, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38480878

RESUMO

Understanding how and why menopause has evolved is a long-standing challenge across disciplines. Females can typically maximize their reproductive success by reproducing for the whole of their adult life. In humans, however, women cease reproduction several decades before the end of their natural lifespan1,2. Although progress has been made in understanding the adaptive value of menopause in humans3,4, the generality of these findings remains unclear. Toothed whales are the only mammal taxon in which menopause has evolved several times5, providing a unique opportunity to test the theories of how and why menopause evolves in a comparative context. Here, we assemble and analyse a comparative database to test competing evolutionary hypotheses. We find that menopause evolved in toothed whales by females extending their lifespan without increasing their reproductive lifespan, as predicted by the 'live-long' hypotheses. We further show that menopause results in females increasing their opportunity for intergenerational help by increasing their lifespan overlap with their grandoffspring and offspring without increasing their reproductive overlap with their daughters. Our results provide an informative comparison for the evolution of human life history and demonstrate that the same pathway that led to menopause in humans can also explain the evolution of menopause in toothed whales.


Assuntos
Evolução Biológica , Menopausa , Modelos Biológicos , Baleias , Animais , Feminino , Bases de Dados Factuais , Longevidade/fisiologia , Menopausa/fisiologia , Reprodução/fisiologia , Baleias/classificação , Baleias/fisiologia , Humanos
8.
Horm Behav ; 160: 105491, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38340412

RESUMO

Trees release Herbivore-Induced Plant Volatiles (HIPVs) into the air in response to damage inflicted by insects. It is known that songbirds use those compounds to locate their prey, but more recently the idea emerged that songbirds could also use those odours as cues in their reproductive decisions, as early spring HIPVs may contain information about the seasonal timing and abundance of insects. We exposed pre-breeding great tits (Parus major) to the odours of caterpillar-infested trees under controlled conditions, and monitored reproduction (timing of egg laying, number of eggs, egg size) and two of its main hormonal drivers (testosterone and 17ß-estradiol in males and females, respectively). We found that females exposed to HIPVs did not advance their laying dates, nor laid larger clutches, or larger eggs compared to control females. 17ß-estradiol concentrations in females were also similar between experimental and control birds. However, males exposed to HIPVs had higher testosterone concentrations during the egg-laying period. Our study supports the hypothesis that insectivorous songbirds are able to detect minute amounts of plant odours. The sole manipulation of plant scents was not sufficient to lure females into a higher reproductive investment, but males increased their reproductive effort in response to a novel source of information for seasonal breeding birds.


Assuntos
Passeriformes , Aves Canoras , Feminino , Animais , Masculino , Testosterona , Árvores , Odorantes , Melhoramento Vegetal , Passeriformes/fisiologia , Aves Canoras/fisiologia , Reprodução/fisiologia , Insetos , Estradiol
9.
Poult Sci ; 103(4): 103544, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38402849

RESUMO

The photoperiod is an important factor during rearing and laying period that affects age and body weight at sexual maturation and reproductive performance in poultry; however relevant research on this factor in pigeons is still lacking. Thus, this study investigated the effects of different photoperiodic programs on the reproductive performance and hormonal profile in White King pigeons. From 101 d of age, the pigeons in the control group were exposed to a natural photoperiod until 160 d, and then to a photoperiod of 16 h (16 light [L]: 8 dark [D]) and lasted for 200 d. Pigeons in the 3 experimental groups were exposed to a short photoperiod of 8L: 16D until 160 d, and then to 14L: 10D, 16L: 8D, and 18L: 6D, respectively. The results showed that light-restriction (8L: 16D) during the rearing period and then 14L: 10D or 16L: 8D photostimulation delayed the age at first egg laying in pigeons. However, 16L: 8D after an 8L: 16D photoperiod during the breeding period ensured maximum photosensitivity, and significantly improved the reproductive performance (egg production and fertility rates) in pigeons. Moreover, the highest reproductive performance in group under16L: 8D after 8L: 16D photoperiodic program was accompanied by improved follicle-stimulating hormone and estradiol levels and reduced prolactin hormone levels. The results indicated that photoperiodic programs from rearing to laying period are closely related to the reproductive performance of White King pigeons. The results provide information that 8L: 16D during rearing period and 16L: 8D during laying period can be used to enhance reproductive performance in the pigeon industry.


Assuntos
Columbidae , Fotoperíodo , Animais , Galinhas/fisiologia , Reprodução/fisiologia , Hormônios , Luz
10.
J Anim Ecol ; 93(3): 348-366, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38303132

RESUMO

Variation in life history traits in animals and plants can often be structured along major axes of life history strategies. The position of a species along these axes can inform on their sensitivity to environmental change. For example, species with slow life histories are found to be less sensitive in their long-term population responses to environmental change than species with fast life histories. This provides a tantalizing link between sets of traits and population responses to change, contained in a highly generalizable theoretical framework. Life history strategies are assumed to reflect the outcome of life history tradeoffs that, by their very nature, act at the individual level. Examples include the tradeoff between current and future reproductive success, and allocating energy into growth versus reproduction. But the importance of such tradeoffs in structuring population-level responses to environmental change remains understudied. We aim to increase our understanding of the link between individual-level life history tradeoffs and the structuring of life history strategies across species, as well as the underlying links to population responses to environmental change. We find that the classical association between lifehistory strategies and population responses to environmental change breaks down when accounting for individual-level tradeoffs and energy allocation. Therefore, projecting population responses to environmental change should not be inferred based only on a limited set of species traits. We summarize our perspective and a way forward in a conceptual framework.


Assuntos
Traços de História de Vida , Animais , Reprodução/fisiologia , Plantas
11.
Gen Comp Endocrinol ; 350: 114477, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38387532

RESUMO

Gonadotropin-inhibitory hormone (GnIH) was the first reported hypothalamic neuropeptide inhibiting reproduction in vertebrates. Since its discovery in the quail brain, its orthologs have been identified in a variety of vertebrate species and even protochordates. Depending on the species, the GnIH precursor polypeptides comprise two, three or four mature peptides of the RFamide family. It has been well documented that GnIH inhibits reproduction at the brain-pituitary-gonadal levels and participates in metabolism, stress response, and social behaviors in birds and mammals. However, most studies in fish have mainly been focused on the physiological roles of GnIH in the control of reproduction and results obtained are in some cases conflicting, leaving aside its potential roles in the regulation of other functions. In this manuscript we summarize the information available in fish with respect to the structural diversity of GnIH peptides and functional roles of GnIH in reproduction and other physiological processes. We also highlight the molecular mechanisms of GnIH actions on target cells and possible interactions with other neuroendocrine factors.


Assuntos
Gonadotropinas , Hormônios Hipotalâmicos , Animais , Gonadotropinas/metabolismo , Vertebrados/metabolismo , Peptídeos/metabolismo , Hipotálamo/metabolismo , Reprodução/fisiologia , Peixes/metabolismo , Mamíferos/metabolismo , Hormônios Hipotalâmicos/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo
12.
Proc Biol Sci ; 291(2017): 20231848, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38412966

RESUMO

Theories of ageing predict that investment in reproduction will trade-off against survival and later-life reproduction. Recent evidence from invertebrates suggests that just perceiving cues of a potential mate's presence can reduce lifespan, particularly in males, and that activation of neuroendocrine reward pathways associated with mating can alleviate these effects. Whether similar effects occur in vertebrates remains untested. We tested whether exposure to olfactory cues from the opposite sex would influence mortality and reproductive senescence in male mice. We observed that males exposed to female olfactory cues from middle- to old age (from 10 to 24 months of age) showed reduced late-life fertility, irrespective of whether they had also been allowed to mate with females earlier in life. Males that were exposed to female odours in conjunction with mating also showed an increased mortality rate across the exposure period, indicating that olfactory cues from females can increase male mortality in some environments. Our results show that exposure to female odours can influence reproductive ageing and mortality in male mice, highlighting that sensory perception of mates may be an important driver of life-history trade-offs in mammals.


Assuntos
Sinais (Psicologia) , Comportamento Sexual Animal , Feminino , Masculino , Camundongos , Animais , Comportamento Sexual Animal/fisiologia , Reprodução/fisiologia , Envelhecimento/fisiologia , Fertilidade , Mamíferos
13.
Philos Trans R Soc Lond B Biol Sci ; 379(1898): 20220516, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38310938

RESUMO

Reproduction in fishes is sensitive to temperature. Elevated temperatures and anomalous 'heat waves' associated with climate change have the potential to impact fish reproductive performance and, in some cases, even induce sex reversals. Here we examine how thermal sensitivity in the hormone pathways regulating reproduction provides a framework for understanding impacts of warmer conditions on fish reproduction. Such effects will differ depending on evolved variation in temperature sensitivity of endocrine pathways regulating reproductive processes of sex determination/differentiation, gametogenesis and spawning, as well as how developmental timing of those processes varies with reproductive ecology. For fish populations unable to shift geographical range, persistence under future climates may require changes in temperature responsiveness of the hormone pathways regulating reproductive processes. How thermal sensitivity in those hormone pathways varies among populations and species, how those pathways generate temperature maxima for reproduction, and how rapidly reproductive thermal tolerances can change via adaptation or transgenerational plasticity will shape which fishes are most at risk for impaired reproduction under rising temperatures. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.


Assuntos
Peixes , Reprodução , Animais , Reprodução/fisiologia , Peixes/fisiologia , Mudança Climática , Aclimatação , Ecologia , Temperatura
14.
J Exp Zool A Ecol Integr Physiol ; 341(4): 421-430, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38369873

RESUMO

Testosterone, the primary sex hormone in male lizards, is closely linked to Leydig cell activity (the cells where steroidogenesis occurs) throughout the reproductive cycle, but testosterone action is related to androgen receptors (ARs) distribution in the seminiferous epithelium. In temperate zones, environmental factors detected through the hypothalamic-pituitary-gonadal axis, downregulate plasma testosterone, resulting in a seasonal reproductive cycle. The aim of this work is to study plasma testosterone in adult male lizards of Liolaemus cuyanus, an oviparous species, throughout its reproductive cycle and its relationship with Leydig cell histology, TotalLeydigCell/ActiveLeydigCell (TLC/ALC) ratio, environmental factors (temperature, relative humidity and solar irradiation) and ARs distribution in seminiferous epithelium. Specimens (N = 27) were captured (October to March) in a semi-arid zone (Valle de Matagusanos, San Juan, Argentina) and grouped into three relevant reproductive periods: pre-reproductive (PrR), reproductive (R), and post-reproductive (PsR). Significant differences in plasma testosterone were found among these periods, highest during R than in PsR. A significant positive correlation between plasma testosterone and TLC/ALC ratio was also observed. Plasma testosterone has a significant positive correlation only with solar irradiation, but not with the other variables. In PrR and R, ARs distribution was cytoplasmic and nuclear, shifting to only cytoplasmic in PsR. These results highlight the close correspondence between plasma testosterone, Leydig cell histology and activity, environmental factors, and ARs distribution, resulting in a synchronization that allows males of L. cuyanus to coordinate their reproductive cycle with the most favorable environmental conditions, probably for mating and birth of offspring.


Assuntos
Lagartos , Testosterona , Masculino , Animais , Células Intersticiais do Testículo/metabolismo , Lagartos/fisiologia , Receptores Androgênicos/metabolismo , Reprodução/fisiologia
15.
Zoo Biol ; 43(2): 183-187, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38234126

RESUMO

The ability of females to store sperm for extended periods in their reproductive tracts (termed long-term sperm storage, LTSS) has been reported across a diversity of vertebrate taxa. The evolutionary, ecological, and physiological significance of LTSS is wide-ranging and includes the ability to produce offspring when mates may be temporally scarce by way of decoupling copulation from ovulation, inbreeding avoidance, and the generation and maintenance of genetic diversity in progeny. Among vertebrate lineages, nonavian reptiles exhibit a remarkable capacity for LTSS, with the production of viable offspring reported after periods exceeding 6 years since prior contact with a potential mate. Given that female reptiles are able to store viable sperm for prolonged periods, it is important to disentangle LTSS from that of facultative parthenogenesis (FP), a reproductive trait which appears widespread among all reptile lineages. The implications of this distinction are particularly important in the context of the development and management of captive breeding programs. To accurately determine between the two reproductive strategies, genomic screening is highly recommended. Following a period of isolation for 13 months from a potential male mate, a female Himalayan Mountain Pitviper (Ovophis monticola) produced a clutch of three male offspring. Here, through genome-scale analyses of the female and her progeny, we document the first record of LTSS in this genus and exclude FP as the alternative hypothesis.


Assuntos
Animais de Zoológico , Sêmen , Masculino , Animais , Feminino , 60479 , Reprodução/fisiologia , Espermatozoides
16.
Anim Reprod Sci ; 261: 107409, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38215629

RESUMO

Follicular atresia (FA) has been assumed to serve different functions in reptiles, e.g. helping to develop hierarchies, limiting clutch size, and regression of ovarian structures. Reproductive output is dependent on a balance between ovulations and FA. Excessive rates of FA may not only be detrimental for the survival of a population, but have also been associated with pathological conditions. In order to gain insights into the physiological and potentially pathological processes of FA, we performed a decriptive study on the morphological features of the ovaries in sexually mature female veiled chameleons (Chamaeleo calyptratus, VC). Of 60 clinically healthy female VC with continuous ovarian cycling and at least one confirmed cycle with FA over at least 1.5 years, 30 were selected for macroscopic evaluation of ovarian appearance and 7 were subjected to histology and immunohistology. While FA of previtellogenic follicles happened at a low rate, expected for a species with two germinal beds per ovary and polyautochronic reproductive pattern, atresia in the late vitellogenic stage affected entire generations of follicles, consequential to ovulatory failure. Histologically, no pathological processes were identified in any of the animals. Rather, three stages of FA (early, middle, late) were defined and vitellogenic follicles showed two distinct morphological types of FA: yolky and cystic. Yolky FA was found in 21/30 (70%) animals, while cystic FA co-occurred in 9/30 (30%) of the animals.


Assuntos
Atresia Folicular , Lagartos , Feminino , Animais , Lagartos/fisiologia , Reprodução/fisiologia , Ovulação , Ovário
17.
Ecology ; 105(3): e4232, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38290131

RESUMO

Temperature varies on multiple timescales and ectotherms must adjust to these changes to survive. These adjustments may lead to energetic trade-offs between self-maintenance and reproductive investment. However, we know little about how diurnal and seasonal temperature changes impact energy allocation. Here we used a combination of empirical data and modeling of both thermoregulatory behaviors and body temperature to examine potential energetic trade-offs in the dung beetle Onthophagus taurus. Beginning in March 2020, universities and laboratories were officially closed due to the COVID-19 pandemic. We thus performed experiments at a private residence near Knoxville, Tennessee, USA, leveraging the heating, ventilation and air conditioning of the home to manipulate temperature and compare beetle responses to stable indoor temperatures versus variable outdoor temperatures. We collected O. taurus beetles in the early-, mid-, and late-breeding seasons to examine energetics and reproductive output in relation to diurnal and seasonal temperature fluctuations. We recorded the mass of field fresh beetles before and after a 24-h fast and used the resulting change in mass as a proxy for energetic costs of self-maintenance across seasons. To understand the impacts of diurnal fluctuations on energy allocation, we held beetles either indoors or outdoors for 14-day acclimation trials, fed them cow dung, and recorded mass change and reproductive output. Utilizing biophysical models, we integrated individual-level biophysical characteristics, microhabitat-specific performance, respirometry data, and thermoregulatory behaviors to predict temperature-induced changes to the allocation of energy toward survival and reproduction. During 24 h of outdoor fasting, we found that beetles experiencing reduced temperature variation lost more mass than those experiencing greater temperature variation, and this was not affected by season. By contrast, during the 14-day acclimation trials, we found that beetles experiencing reduced temperature variation (i.e., indoors) gained more mass than those experiencing greater temperature variation (i.e., outdoors). This effect may have been driven by shifts in the metabolism of the beetles during acclimation to increased temperature variation. Despite the negative relationship between temperature variation and energetic reserves, the only significant predictor of reproductive output was mean temperature. Taken together, we find that diurnal temperature fluctuations are important for driving energetics, but not reproductive output.


Assuntos
Besouros , Animais , Feminino , Bovinos , Humanos , Besouros/fisiologia , Estações do Ano , Temperatura , Pandemias , Reprodução/fisiologia
18.
Curr Biol ; 34(3): 606-614.e3, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38278151

RESUMO

Sleep is a prominent, seemingly universal animal behavior. Although sleep maintains optimal waking performance, the biological drive to sleep may be incompatible with the life history of some species. In a multi-year study on semelparous marsupials in Australia, we provide the first direct evidence of ecological sleep restriction in a terrestrial mammal. Dusky (Antechinus swainsonii) and agile (A. agilis) antechinus have an unusual reproductive strategy characterized by the synchronous death of all males at the end of their only breeding season. Using accelerometry, electrophysiology, and metabolomics, we show that males, but not females, increase their activity during the breeding season by reducing sleep. In a trade-off between the neurophysiological requirements for sleep and evolutionary necessity for reproduction, strong sexual selection might drive males to sacrifice sleep to increase access to fertile females and ultimately maximize their fitness.


Assuntos
Marsupiais , Animais , Feminino , Masculino , Marsupiais/fisiologia , Reprodução/fisiologia , Austrália , Evolução Biológica
19.
J Exp Zool A Ecol Integr Physiol ; 341(3): 307-321, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38247297

RESUMO

Reptiles display considerable diversity in reproductive behavior, making them great models to study the neuroendocrine control of reproductive behavior. Many reptile species are seasonally breeding, such that they become reproductively active during their breeding season and regress to a nonreproductive state during their nonbreeding season, with this transition often prompted by environmental cues. In this review, we will focus on summarizing the neural and neuroendocrine mechanisms controlling reproductive behavior. Three major areas of the brain are involved in reproductive behavior: the preoptic area (POA), amygdala, and ventromedial hypothalamus (VMH). The POA and VMH are sexually dimorphic areas, regulating behaviors in males and females respectively, and all three areas display seasonal plasticity. Lesions to these areas disrupt the onset and maintenance of reproductive behaviors, but the exact roles of these regions vary between sexes and species. Different hormones influence these regions to elicit seasonal transitions. Circulating testosterone (T) and estradiol (E2) peak during the breeding season and their influence on reproduction is well-documented across vertebrates. The conversion of T into E2 and 5α-dihydrotestosterone can also affect behavior. Melatonin and corticosterone have generally inhibitory effects on reproductive behavior, while serotonin and other neurohormones seem to stimulate it. In general, there is relatively little information on the neuroendocrine control of reproduction in reptiles compared to other vertebrate groups. This review highlights areas that should be considered for future areas of research.


Assuntos
Encéfalo , Répteis , Feminino , Masculino , Animais , Reprodução/fisiologia , Testosterona , Comportamento Sexual Animal/fisiologia
20.
J Therm Biol ; 119: 103787, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38281314

RESUMO

Across taxa, the temperature experienced by individuals early in life can have large effects on their development. However, comparatively little is known about whether the effects of this thermal developmental environment can be long-lasting or transgenerational. In birds, one important aspect of the developmental environment is incubation and, in general, eggs incubated at low temperatures produce offspring with smaller morphology, suboptimal physiology, and even lower long-term survival. Yet, little is known about whether incubation temperature may affect avian reproduction in adulthood, and nothing is known about whether the effects of avian incubation temperature may be transgenerational. To investigate this, we incubated zebra finch (Taeniopygia guttata) eggs at two different temperatures: 37.5 °C ('control') and 36.3 °C ('low'), raised nestlings until adulthood, and allowed same-temperature treatment pairs to reproduce. We found that F1 individuals incubated at the low temperature had shorter beaks at the start of reproduction than those incubated at the control temperature. Further, compared to those from control parents, F2 offspring from parents incubated at the low temperature had lighter body masses at 5 days-old and had shorter beaks at 30 days-old. However, we found little evidence that incubation temperature affected other aspects of reproduction, with no effect on latency to lay, clutch size, egg mass, incubation period, hatching success/asynchrony, fledging, or the number of offspring that ultimately survived until independence. Overall, we found some evidence that a difference in the early thermal developmental environment can have lasting morphological effects into the next generation. However, future work is needed to determine whether the incubation temperature that birds experience as embryos may influence parental care behaviors or lifetime reproductive success.


Assuntos
Tentilhões , Humanos , Animais , Temperatura , Tentilhões/fisiologia , Reprodução/fisiologia , Desenvolvimento Embrionário , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...